Tag Archives: Materiale didattico 22

Nomenclatura composti organici polifunzionali II

Con lo studio della nomenclatura dei composti carbonilici, è arrivato il momento di mettere insieme tutte le regole studiate fino ad ora per poter essere in grado di attribuire il nome IUPAC a molecole anche complesse.

Nello schema qui riportato, bisogna modificare la prima domanda in “il composto contiene un gruppo funzionale prioritario?

Sarà quello a determinare lo scheletro principale e il verso di numerazione.

NB: in un ciclo, il gruppo funzionale prioritario sarà sul carbonio 1. La numerazione procede nel verso che dà all’eventuale legame multiplo il numero più basso; se non ci sono legami multipli, si procede nella direzione che dà al primo sostituente il numero più basso. Su una catena lineare, invece, si deve partire da una delle estremità e si sceglierà la direzione che dà al carbonio che lega il gruppo funzionale prioritario il numero più basso possibile.

A questo punto, è opportuno rifarsi alle indicazioni precedentemente pubblicate relative alla nomenclatura di composti organici polifunzionali.

NB: ai fini della nomenclatura, una volta individuato il gruppo funzionale prioritario, tutti gli altri gruppi funzionali vanno considerati alla stregua di sostituenti e vanno indicati come prefissi (fanno eccezione i legami multipli).

Qui troverete indicazioni su come indicare la presenza di gruppi carbonilici come sostituenti.


ATTENZIONE: Non tutte le regole qui riportate sono aggiornate in accordo con le indicazioni IUPAC 2013, dato che le regole utilizzate prima dell’ultima revisione sono ancora ampiamente utilizzate.

Reazioni di sostituzione ed eliminazione

Nelle ultime lezioni abbiamo analizzato le reazioni di sostituzione ed eliminazione degli alogenuri alchilici e, a seguire, le reazioni di alcoli, eteri, epossidi, ammine e composti contenenti zolfo.

Gli alogenuri alchilici vanno incontro a questo tipo di reazioni:

…e il prevalere di un meccanismo sull’altro dipende dalle caratteristiche strutturali dell’alogenuro alchilico, ma anche dal tipo di nucleofilo/base e, spesso, dalle condizioni di reazione. Qui potrete trovare uno schema e una tabella che, insieme alla conoscenza di tutti i fattori determinanti, può aiutarvi a capire con quale meccanismo avverrà una reazione o supportarvi nella scelta di una determinata reazione in una strategia sintetica.

NB: questi schemi non si applicano agli alogenuri benzilici e allilici (vedere libro).

REAZIONI DI SOSTITUZIONE ED ELIMINAZIONE

Dopo aver analizzato le reazioni di sostituzione ed eliminazione a carico degli alogenuri alchilici, abbiamo anche visto come questi meccanismi siano possibili (o meno) con alcoli, eteri, epossidi, ammine e composti contenenti zolfo.

Qui troverete uno riassunto delle principali reazioni:

REAZIONI DI ALCOLI, ETERI, EPOSSIDI, AMMINE E COMPOSTI CONTENENTI ZOLFO

ORGANIC CHEMISTRY CHALLENGE – CDS FARMACIA

Regolamento:

  • Vincerà la sfida (2 punti di bonus sulla prossima prova intercorso) chi risponderà per primo CORRETTAMENTE al quesito
  • La risposta va inserita nei commenti al post.
  • Ognuno può rispondere solo una volta (anche in presenza di più di un commento pubblicato dalla stessa persona, soltanto il primo sarà preso in considerazione).
  • Il tempo massimo a disposizione sarà di 12 ore dalla pubblicazione del post.
  • L’eventuale vincitore sarà annunciato a lezione.

CHALLENGE

L’etino viene fatto reagire con due diversi alogenuri alchilici a 3 atomi di carbonio per formare un alchino interno che, in seguito ad idrogenazione catalitica su catalizzatore di Lindlar, forma 1-ciclopropil-3-metil-1-butene (composto A).

Quando il composto A viene sottoposto ad idratazione catalizzata da acidi, si ottiene, tra i prodotti, anche il 1,2-dimetilcicloesanolo (composto B).

  1. descrivere uno schema di sintesi che spieghi la formazione del composto A
  2. proporre un possibile meccanismo che spieghi la formazione del composto B. Descrivere il nome di tutti i carbocationi intermedi, partendo dal primo che è il catione 1-ciclopropil-3-metilbutilico (NB: la nomenclatura dei carbocationi utilizza il termine catione seguito dal nome della catena carboniosa più lunga contenente l’atomo di carbonio carico positivamente, che è sempre il C-1).
Good Luck!

La challenge scadrà alle 22 del 3 dicembre

Nomenclatura composti organici polifunzionali

Le seguenti dispense sono utili solo se si è studiata attentamente la nomenclatura delle singole classi di composti organici!

Per cominciare, diamo una rispolverata alle regole di nomenclatura di alcani e cicloalcani ramificati.

A questo punto, siamo pronti per attribuire il nome a composti organici monofunzionali e polifunzionali.

NB: troverete qui riferimenti a gruppi funzionali che non abbiamo ancora studiato…per ora concentratevi su quelli già introdotti a lezione!

Consigli utili allo svolgimento degli esercizi relativi alle reazioni degli alcheni

Quando è necessario prevedere il meccanismo e il/i prodotti principali di una reazione dobbiamo porre attenzione, dove appropriato, alla regioselettività, stereoselettività e stereospecificità della reazione stessa. È dunque chiaro che lo studio preliminare dei meccanismi di reazione è essenziale. Nel rivedere tali meccanismi, provare a razionalizzare ogni passaggio in termini di reazione del nucleofilo con l’elettrofilo.

Nel descrivere il meccanismo di reazione, è importante fare un uso corretto delle frecce ricurve, per mostrare il movimento degli elettroni, e delle frecce adatte ad indicare il passaggio da uno stadio all’altro della reazione. Prestare, inoltre, attenzione alla presenza di eventuali atomi carichi positivamente o negativamente.

Per reazioni che prevedono la formazione di un intermedio carbocationico, fare sempre attenzione alla possibilità di trasposizioni che possano portare alla formazione di un carbocatione più stabile.

Per le reazioni stereospecifiche, è necessario seguire la stereochimica della reazione utilizzando le opportune rappresentazioni grafiche (per i composti a catena aperta, usare strutture a cavalletto o formule prospettiche).
Di seguito, due esempi.

Nel primo, facciamo reagire l’(E)-3-metil-2-pentene con Br2 in H2O. Mostriamo la stereochimica della reazione utilizzando le formule prospettiche.

Ricordiamo che il doppio legame è planare (i due carboni sp2 e gli atomi ad essi direttamente legati giacciono tutti in un piano); nell’immagine che segue, troverete i sostituenti legati ai carboni sp2 su cuneo pieno o su cuneo tratteggiato. Questo indica che stiamo immaginando che il piano su cui si trovano tutti i legami dei due carboni ibridati sp2 non è quello sello schermo (o del foglio), ma quello ad esso perpendicolare.

Gli elettroni π (pi-greco) potranno dare l’attacco all’elettrofilo sia al di sopra sia al di sotto del piano. Nell’immagine seguente è mostrato l’attacco verso l’alto. Si formerà quindi lo ione bromonio ciclico che subirà l’attacco del nucleofilo sul carbonio più sostituito. Questo attacco avviene in anti. Si formerà, quindi, un unico stereoisomero. (NB: per una descrizione dettagliata del meccanismo si rimanda al libro).

Da questa reazione stereospecifica (e quindi anche stereoselettiva) otterremo anche l’enantiomero del prodotto appena formato. Questo deriva dalla formazione dello ione bromonio sulla faccia inferiore del piano definito dai due carboni sp2.

NB: il prodotto ottenuto a seguito dell’attacco dell’acqua su questo ione bromonio avrà configurazione (2S,3R)

È possibile mostrare la stereochimica della reazione anche utilizzando le rappresentazioni a cavalletto.

A titolo di esempio, facciamo avvenire la reazione sull’alchene (Z)-3-metil-2-pentene (ci aspettiamo, dunque, la formazione di due composti che saranno tra loro enantiomeri, e saranno diastereoisomeri dei prodotti della reazione precedente).
Per usare le strutture a cavalletto, riportiamo il doppio legame come mostrato di seguito (attenzione a rispettare la geometria del doppio legame!). Anche in questo caso, per attacco da parte degli elettroni π all’elettrofilo da sopra o da sotto al piano di formano due ioni bromonio. Qui è mostrato l’attacco verso il basso che porterà alla sintesi dello stereoisomero mostrato.

Per definire la stereochimica è consigliabile riportare la struttura su una proiezione di Fischer (ricordandosi di eclissarla prima di farlo).

A seguito della formazione dell’altro ione bromonio (che deriva dall’attacco al di sopra del piano), si otterrà l’enantiomero del composto qui ottenuto.

NB: avendo familiarità con le varie rappresentazioni delle molecole organiche, è possibile passare agevolmente dall’una all’altra. A questo punto potremmo, ad esempio, scrivere questo composto usando una struttura a segmenti.

La tabella 6.1 del libro può essere utile per verificare se la stereochimica della reazione è stata determinata correttamente


Se per le reazioni stereospecifiche è necessario effettuare un’analisi retrosintetica, è essenziale tener conto proprio della stereochimica con cui procede la reazione. È quindi fondamentale capire da quale alchene partire: per farlo, bisogna aver ben chiaro se la reazione prevede una stereochimica sin o anti.

Vediamo che succede se la reazione procede con stereochimica anti.
ES.1: Partendo dall’opportuno alchene, illustrare il meccanismo di reazione della sintesi del seguente composto. Indicare eventuali altri prodotti fornendo per tutti il nome IUPAC completo di stereochimica.

Si tratta di una reazione di un alchene (3-metil-2-pentene) con bromo in metanolo. Poichè questa è una reazione stereospecifica, è ESSENZIALE capire da quale isomero (E o Z) dell’alchene bisogna partire per ottenere il prodotto desiderato. Dal momento che questa reazione è anche stereoselettiva, determiniamo le configurazioni assolute dei carboni chirali, sapendo che in questo caso otterremo anche l’enantiomero.

Per capire da quale alchene dobbiamo partire, trasformiamo questa proiezione di Fischer in una rappresentazione a cavalletto, sapendo che i sostituenti sulla linea verticale si trovano lontani dall’osservatore, mentre quelli sulla linea orizzontale sono rivolti verso l’osservatore:

L’addizione di bromo in metanolo procede con stereochimica anti; questo significa che Br e OMe devono trovarsi da parte opposta. Ruotiamo dunque la rappresentazione a cavalletto lungo il legame C2-C3 in modo da evidenziare quanto appena detto (dobbiamo ottenere il conformero sfalsato qui mostrato):

L’alchene di partenza è dunque (Z)-3-metil-2-pentene (se la struttura a cavalletto è orientata come sopra mostrato e i sostituenti sono correttamente posizionati, basta a questo punto “eliminare” i due sostituenti e “aggiungere” il doppio legame come mostrato in figura).

Il seguente video può essere utile per visualizzare l’attacco in anti:


Vediamo che succede se la reazione procede con stereochimica sin.
ES. 2:  Da quale 2,3,4-trimetil-3-esene è possibile ottenere il seguente prodotto di idrogenazione catalitica?

L’idrogenazione catalitica porta all’addizione di un idrogeno a ciascun carbonio sp2 e procede con stereochimica sin.
La reazione è stereospecifica. Per capire da quale alchene dobbiamo partire, trasformiamo la proiezione di Fischer in una rappresentazione a cavalletto

L’addizione avviene con stereochimica sin; questo significa che i due H devono trovarsi dallo stesso lato. Ruotiamo dunque la rappresentazione a cavalletto lungo il legame C3-C4 in modo da evidenziare quanto appena detto (dobbiamo ottenere il conformero eclissato qui mostrato):

L’alchene di partenza è dunque (Z)-2,3,4-trimetil-3-esene (se la struttura a cavalletto è orientata come sopra e i sostituenti sono correttamente posizionati, per definire l’alchene di partenza, basta a questo punto “eliminare” i due atomi di idrogeno e “aggiungere” il doppio legame come mostrato in figura). Da questo alchene, per idrogenazione catalitica, otterremo anche l’enantiomero del composto iniziale.

NB: in molti esercizi, una volta individuato l’alchene di partenza, viene poi richiesto di mostrare anche il meccanismo che porta alla formazione dei prodotti oppure viene chiesto di indicare eventuali altri prodotti (LEGGERE SEMPRE BENE LA TRACCIA).


Qui è possibile scaricare una tabella riassuntiva delle reazioni degli alcheni che può integrare lo schema che trovate sul libro alla fine del capitolo dedicato proprio a queste reazioni.

Rappresentazioni strutturali…e loro interconversione

Diversi tipi di rappresentazioni strutturali dei composti organici sono disponibili e ciascuna di esse è utile per mettere in evidenza determinati aspetti spaziali (e non solo). Saperle scrivere e leggere è fondamentale. Inoltre, è importante saper convertire queste rappresentazioni tra loro.

Sicuramente una struttura che vedremo spesso è quella a segmenti, in cui l’orientamento nello spazio dei sostituenti viene indicato usando un cuneo pieno (verso l’osservatore) e un cuneo tratteggiato (lontano dall’osservatore). Questo tipo di rappresentazione però non è adatta per l’analisi conformazionale, nè utile per mostrare gli aspetti stereochimici delle reazioni.

Nelle formule prospettiche, i legami sul piano del foglio sono disegnati come linee continue (vicine tra loro), quelli diretti fuori dal foglio sono cunei pieni, quelli lontani dall’osservatore cunei tratteggiati. Come disegnare le formule prospettiche? Indicazioni sono presenti nel paragrafo 4.7*. Come fare quando ci sono due centri asimmetrici? Indicazioni sono riportate nella “strategia per la risoluzione dei problemi” a pag. 175. Le formule prospettiche che troverete sul libro mostrano per lo più la struttura tridimensionale della molecola in una conformazione sfalsata. In ogni caso, è possibile anche scrivere la formula prospettica della conformazione eclissata (vedere pag. 166).

Nel paragafo 4.7 vengono introdotte anche le proiezioni di Fischer, mentre nel paragrafo 4.12 si analizzano le proiezioni di Fischer di molecole con più centri chirali. Le proiezioni di Fischer rappresentano sempre il composto in una conformazione eclissata e si ottengono osservando la molecola al centro della V definita da due dei legami del carbonio con i sostituenti. Queste rappresentazioni sono molto utili per riportare molecole con più centri chirali e rendono agevole l’attribuzione della configurazione assoluta.

Le proiezioni di Newman sono usate per rappresentare su carta le strutture tridimensionali che derivano dalla rotazione intorno ai legami sigma. Indicazioni su come scriverle sono riportate nel paragrafo 3.11. Le strutture a cavalletto mostrano il legame C-C in modo prospettico. In particolare, stiamo osservando la molecola da un angolo. I legami possono essere eclissati o sfalsati.

Una nota a parte è essenziale per le rappresentazioni del cicloesano, che sono ampiamente trattate sul libro. Nel paragrafo 3.13 vedrete come disegnare i conformeri a sedia e come effettuare la conversione d’anello. A pagina 133 sono disponibili invece informazioni su come disegnare la proiezione di Newman del cicloesano.

Sul libro, a pagg. 187-189 troverete anche un tutorial su come interconvertire le rappresentazioni strutturali.
Qui vedremo in maniera più dettagliata la conversione delle strutture a cavalletto e proiezioni di Newman in proiezioni di Fischer e viceversa.

Prima però vediamo la relazione esistente tra la proiezione a cavalletto e la proiezione di Newman. Se immaginiamo la proiezione di Newman come una rappresentazione 2D della struttura a cavalletto, che invece ci mostra il legame C-C da un certo angolo, il passaggio dall’una all’altra dovrebbe essere immediato.

Per passare dalla proiezione a cavalletto a quella di Newman, immaginiamo di proiettare i legami (e gli atomi) sul foglio; per fare il contrario, immaginiamo di estendere la proiezione di Newman fuori dal foglio.

CONVERTIRE UNA STRUTTURA A CAVALLETTO IN PROIEZIONE DI FISCHER

Vediamo che succede se abbiamo una struttura a cavalletto e vogliamo ottenere la proiezione di Fischer corrispondente.

Ricordiamo che la proiezione di Fischer rappresenta un conformero eclissato. Quindi, se la proiezione a cavalletto riporta un conformero sfalsato, il primo passo è quello di eclissarla. Vediamo qui due esempi di come è possibile ottenere un conformero eclissato.

Ora prendiamo la prima struttura a cavalletto eclissata (quella in alto). Per convertirla ad una proiezione di Fischer, dobbiamo innanzitutto guardarla al centro della V costituita dai legami tra i carboni chirali e due sostituenti legati a ciascun carbonio. Dobbiamo anche scegliere il punto di osservazione. Quello più immediato per chi sta guardando la struttura sul foglio è dall’alto, con lo stereocentro davanti collocato più vicino a noi. Questo carbonio sarà in basso sulla proiezione di Fischer. Così facendo, nell’esempio in questione, il bromo e il metile dovranno stare sulla linea verticale (che, ricordiamo, indica i legami lontani dall’osservatore). Il bromo però starà in alto e il metile starà in basso sulla linea verticale della proiezione di Fischer.

Mantenendo fisso il punto di osservazione, ora possiamo riportare sulla proiezione di Fischer tutti i sostituenti alla nostra sinistra (che andranno sulle linee orizzontali a sinistra) e tutti quelli che stanno alla nostra destra (che andranno sulle linee orizzontali a destra).

Possiamo guardare la molecola da altre angolazioni? Sì, però è necessario fare molta attenzione a posizionare bene i sostituenti. Immaginiamo per esempio di guardarla sempredall’alto, ma con le spalle rivolte al foglio e quindi con il C-3 (quello che lega il bromo) più vicino a noi. In quel caso avremo sempre il metile e il bromo lontani da noi, ma il metile sarà sul carbonio in alto e il bromo su quello in basso. Inoltre, i sostituenti a destra saranno l’ossidrile e il metile e a sinistra avremo i due atomi di idrogeno.

Notiamo che questa proiezione di Fischer è praticamente quella in alto, ruotata di 180° sul foglio (e quindi, sono lo stesso composto come evidenziato anche dalla configurazione assoluta dei due stereocentri).
Potremmo guardarla anche da altre angolazioni, ma queste richiedono un maggiore sforzo di immaginazione. Ad esempio, immaginiamo di guardarla tra i legami indicati in rosso nell’immagine seguente, con il carbonio davanti (C-2) più vicino a noi. In questo caso, lontani da noi sono collocati i due idrogeni. Ancora una volta dobbiamo far attenzione alla posizione relativa degli altri sostituenti (altrimenti scriveremmo uno stereoisomero del nostro composto).

Ora prendiamo il secondo conformero eclissato, quello che abbiamo ottenuto nel primo passaggio, ruotando il carbonio 2. Anche qui possiamo scegliere la prospettiva di osservazione. Immaginiamo di guardarlo dal basso e frontale (non dando le spalle al foglio). In tal caso, possiamo anche immaginare semplicemente di”ribaltare” la struttura sul foglio. Immaginiamo di appoggiare la mano nel punto indicato dalla freccia blu qui sotto e di spingere il carbonio verso l’alto, mentre l’altro carbonio resta fisso sul foglio. Otterremo il ribaltamento della struttura. Quindi l’OH starà verso l’alto e l’H verso il basso. Facciamo attenzione alla disposizione degli altri sostituenti.
Ancora una volta è comunque possibile osservarla da più angolazioni, ma bisogna sempre fare molta attenzione.

Notiamo come la configurazione dei carboni chirali è sempre la stessa. Abbiamo infatti lavorato su un singolo stereoisomero.

Consiglio: provate a lavorare con l’aiuto dei modellini!

CONVERTIRE UNA PROIEZIONE DI FISCHER IN PROIEZIONE A CAVALLETTO

Come passare da proiezione di Fischer ad una a cavalletto? Ci ricordiamo che la proiezione di Fischer è relativa ad un conformero eclissato e che i due sostituenti sulla linea verticale sono lontani dall’osservatore. Quindi, li posizioniamo come mostrato in figura

A questo punto, mettiamo sulla destra i sostituenti che stanno a destra sulla proiezione di Fischer e a sinistra quelli a sinistra (attenzione! Il nostro punto di osservazione della struttura a cavalletto in questo momento è dall’alto guardando verso il foglio).

PROIEZIONE DI NEWMAN/PROIEZIONE DI FISCHER

E per quanto concerne la conversione proiezione di Newman/proiezione di Fischer e viceversa? Se è chiara la relazione tra la proiezione di Newman e le strutture a cavalletto, non dovrebbe essere difficile…

Vediamo un esempio di passaggio dalla proiezione di Newman a quella di Fischer.

Qui la stiamo osservando sempre dall’alto e rivolti verso il foglio (o lo schermo).

E se l’abbiamo eclissata nel modo seguente?

In questo caso, possiamo seguire il consiglio del libro e quindi “muovere” verso il basso il legame che coinvolge il metile sul carbonio posteriore (o in generale quello che punta verso l’alto sul carbonio in questione). Così facendo, il metile starà in basso e legherà alla sua sinistra il bromo e alla sua destra l’H. L’altro legame che punta verso l’alto, quello con l’H, sarà sul carbonio in alto nella proiezione di Fischer. L’ossigeno sarà alla sua sinistra e il metile alla sua destra.

Si può passare dalla proiezione di Fischer a quella di Newman agevolmente se si ricorda che Fischer rappresenta un conformero eclissato. Bisogna però essere attenti nel definire il punto di osservazione sulla proiezione di Newman e scrivere il conformero eclissato corretto. All’inizio, potrebbe essere utile “passare” per la struttura a cavalletto (vedere sopra la descrizione del metodo) e poi convertire quella in proiezione di Newman.


Passare da una rapprensentazione all’altra può sembrare complesso all’inizio. Per poterlo fare in maniera consapevole è essenziale aver capito bene ciascun tipo di rappresentazione…e tanto esercizio.


*In questo post di fa spesso riferimento al libro: in questo caso ci riferiamo all’ultima edizione del Bruice. Chi ha un libro diverso, potrà avvalersi dell’aiuto dell’indice analitico

R/S Chem e Stereogame

Studiare la stereochimica divertendosi?
Assolutamente possibile! Non ci credete? Provate a giocare a R/S Chem…una risorsa interattiva che vi permette di allenarvi nell’attribuzione della configurazione assoluta ai carboni chirali.

Ci sono due modalità “learn” e “expert”. Nella modalità expert le domande sono a tempo. In entrambe le modalità, ci sono poi tre livelli (easy, medium e hard). Il primo passaggio è sempre la determinazione dell’ordine di priorità (trascinando i numeri che trovate in basso sugli atomi):

Solo quando l’attribuzione delle priorità è corretta, sarà possibile procedere (la freccia in basso a destra si colorerà di verde).

A questo punto, nella modalità learn, bisognerà riportare i numeri 1-3 su una sorta di proiezione di Newman (rispettando l’ordine in cui sono presenti nella molecola e assumento che il sostituente con priorità 4 sia lontano dall’osservatore) e determinare la configurazione. Nella modalità expert sarà necessario stabilire direttamente la configurazione dopo aver determinato l’ordine di priorità (NB: il passaggio intermedio che si effettua nella modalità learn non è necessario ed in genere procediamo seguendo ciò che accade nella modalità expert).

Se la risposta è corretta si aprirà questa finestra. Sarà anche possibile valutare se si è ragionato bene sull’attribuzione dell’ordine di priorità, dato che l’ordine in questione viene qui ampiamente giustificato.


Se volete invece rivedere la stereochimica in generale (quindi non limitata alla determinazione della configurazione assoluta), è possibile giocate allo stereogame, un gioco da tavolo ideato da una università brasiliana (Universidade Federal do Ceará). Nella cartella che scaricherete (seguendo il link riportato sopra) troverete sia le card sia il tabellone. Nella cartella troverete anche le risposte corrette alle domande riportate nelle card.


Le regole sono molto semplici.
1. Bisogna lanciare il dado, che determinerà di quanti passi potrete procedere.
2. Pescherete una card che conterrà una domanda a risposta multipla. Una sola è la risposta corretta.
3. Se la risposta è corretta, avanzerete (del numero di passi indicati dal dado).
Il consiglio è di iniziare da “basic” per poi procedere coi livelli “intermediate” e “advanced”.


4. Se la risposta è sbagliata, dovrete indietreggiare dello stesso numero di passi


5. Al quarto errore è game over e si deve ricominciare il livello da capo.

BUON DIVERTIMENTO!


Analisi conformazionale

Difficoltà a capire e visualizzare le diverse conformazioni?
Be’…è il momento giusto per utilizzare i vostri modellini molecolari. Questi possono aiutarvi tantissimo nel visualizzare la disposizione spaziale degli atomi delle molecole.
Inoltre, di seguito sono disponibili diversi video e risorse interattive (scorrete la pagina dopo i video per trovare i link a queste ultime) che possono esservi di grandissimo aiuto!
E non dimenticate poi di esercitarvi!

Analisi conformazionale dell’etano

Fattore che destabilizza il conformero eclissato: tensione torsionale (repulsione tra gli elettroni di legame di due sostituenti)
Fattore che stabilizza il conformeto sfalsato: iperconiugazione.


Analisi conformazionale del butano

In questo caso entra in gioco anche la tensione sterica (repulsione tra le nuvole elettroniche dei sostituenti)

Analisi conformazionale del cicloesano

Per i cicloalcani dobbiamo prendere in considerazione anche la tensione angolare o d’anello (dovuta alla deviazione dell’angolo dall’angolo tetraedrico).
Nel caso del cicloesano a sedia, l’angolo è di 111°, molto vicino all’angolo tetraedrico.

Perchè la conformazione a sedia è più stabile delle altre?

Cicloesani monosostituiti

Cicloesani disostituiti

Fattori che destabilizzano i conformeri a sedia:

-Interazioni 1,3-diassiali

-Altre interazioni gauche


Risorse interattive:

Proiezioni di Newman del butano e dell’etano: seguendo questi link e cliccando sulle proiezioni di Newman è possibile confrontare quelle sfalsate e quelle eclissate, inoltre, cliccando sulle frecce è possibile visualizzare la rotazione intorno al legame sigma.

Conformazioni del butano (rispetto al legame C2-C3): anche qui è possibile interagire come descritto sopra per visualizzare tutte le diverse conformazioni e l’energia ad esse associata.

Conformazioni del cicloeasano (modalità interattiva: cliccare su conformeri e su frecce, come descritto sopra).

Nomenclatura IUPAC: orientiamoci tra le regole

Nonostante le regole IUPAC siano fondamentali (sarebbe un grosso problema dover memorizzare migliaia e migliaia di nomi di composti!), a volte risulta difficile applicarle. Il segreto è usare la logica e applicare le regole in base alla loro priorità. Qui troverete uno schema che può supportarvi proprio in questo processo, in particolare nella scelta dell’idrocarburo genitore:

Si ricorda che i gruppi funzionali fin qui incontrati sono solo quelli di alcoli e ammine.

NB: Lo schema riportato sopra può essere usato solo per composti che contengono al massimo un gruppo funzionale. Per composti polifunzionali sarà necessario fare ulteriori valutazioni.

Far riferimento al testo per le indicazioni su come costrutire il nome sia in presenza sia in assenza di gruppi funzionali.

Per quanto riguarda la nomenclatura dei cicloalcani, ricordarsi che le regole IUPAC aggiornate prevedono che il ciclo ha priorità rispetto alla catena lineare, indipendentemente dal numero di atomi di carbonio delle due porzioni della molecola. Le vecchie raccomandazioni (cui fa riferimento anche il libro) prevedevano la priorità per la porzione costituita dal maggior numero di atomi di carbonio.
Ovviamente, in presenza di un gruppo funzionale, bisogna ricordarsi che quest’ultimo determina l’idrocarburo genitore (che sarà quindi quello che porta il gruppo funzionale, indipendentemente dal fatto che sia un ciclo o una catena aperta.

La risposta alla domanda “È possibile definire la catena più lunga (o il ciclo) che contiene il gruppo funzionale?” è solo quando ci sono più catene della stessa lunghezza che contengono il gruppo funzionale (salvo eccezioni, di cui discuteremo più avanti).

Attenzione! Questo schema non è da considerarsi esaustivo: per eccezioni e dettagli far riferimento al libro e agli appunti.

« Older Entries