Author Archives: monicascognamiglio

Esercitiamoci per la prova scritta II

Suggerimento: per poter usare questi set di esercizi come test di autovalutazione, svolgerli senza l’ausilio di libro/appunti ed impiegando un tempo massimo di 2 ore per ciascun set.

PRIMO SET

1. Attribuire il nome IUPAC, comprensivo di stereochimica, al seguente composto:

2) Scrivere l'(R)-3-bromo-5-ossoesanale

3) Il composto mostrato in figura è il paclitaxel. Indicare l’ibridazione dei carboni indicati dalle lettere A e B e dai numeri 1,2,3. Ai carboni indicati da numeri, attribuire anche la configurazione assoluta.

4) Disegnare la struttura di Lewis di ciascuna delle seguenti molecole: a) CH3CHO, b) CH3OCH3, c) CH3COO, d) H2SO4. Scrivere anche eventuali strutture di risonanza e indicare le cariche formali quando esse sono diverse da 0.

5) Quale tra il bromoetano e il bromoetene ha il legame C-Br più corto. Spiegare perchè.

6) Come sintetizzeresti il seguente composto mediante condensazione di Claisen?

7) Completare il seguente schema sintetico

8) L’arginina è un amminoacido con un gruppo ionizzabile in catena laterale. I valori di pKa per questo amminoacido sono i seguenti: pKa (COOH)=2,17; pKa (NH2) =9.04, pKa (gruppo in catena laterale)= 12,48. Quale sarà il pI per questo amminoacido?


SECONDO SET

1. Attribuire il nome IUPAC, comprensivo di stereochimica, ai seguenti composti:

2. Dire quale/i tra i seguenti composti ha uno stereoisomero achirale: a) 1-etil-2-metilciclopentano, b) 1,2-dimetilciclopentano, c) 2,3-diclorobutano, d) 2,3-dicloropentano. Disegnare le strutture degli stereoisomeri achirali.

3. Ordina i seguenti composti per acidità crescente e motivare la scelta

4. Quali sono l’ibridazione, la geometria e l’angolo di legame di un carbonio carbanionico? Quale sarà più stabile tra un carbanione primario e uno secondario? Perchè?

5) Quale dei due ioni mostrati di seguito è più stabile? Spiegare perchè

6) A partire dall’opportuno alchene, mostrare il meccanismo di sintesi del seguente composto. Indicare eventuali altri prodotti formati nel corso della reazione

7) Scrivere i prodotti delle seguenti reazioni. Indicare la stereochimica, quando opportuno

9) Scrivere la struttura di un generico L-amminoacido


TERZO SET

1. Assegnare il nome IUPAC, comprensivo di stereochimica, al seguente composto:

2. Scrivere 8 composti che abbiano formula molecolare C5H8O, almeno uno dei quali contenga un carbonio chirale.

3. Qual è il numero massimo di stereoisomeri per il seguente composto?


4. Quello riportato di seguito è il diagramma delle variazioni di energia potenziale rispetto all’angolo diedro per l’1,2-dicloroetano.

a) A cosa corrispondono A, C, E, G ? b) Disegnare le proiezioni di Newman di tutti i conformeri eclissati, indicandoli con la lettera corrispondente sul grafico. c) Discutere dei fattori che giustificano la minore energia potenziale dei conformeri più stabili.

5) Disporre i seguenti composti in ordine di acidità crescente e giustificare la scelta

6) Completare il seguente schema inserendo le condizioni di reazioni o i prodotti mancanti. Evidenziare la stereochimica.    

7) Ordina i seguenti composti per reattività crescente in una reazione a) E2  b) SN1                        

8) Mostrare il meccanismo di epimerizzazione e di arrangiamento enediolico catalizzato da base del D-glucosio


Cosa fare se si riscontrano difficoltà o se si hanno dubbi:
-rivedere gli argomenti problematici (NB: non si possono risolvere gli esercizi senza aver studiato la teoria, per cui sarà necessario studiare e approfondire l’argomento ed eventualmente-successivamente-esercitarsi ulterioremente utilizzando sia gli esercizi del libro sia quelli presenti su questo blog).
-contattare il docente: è possibile sia chiedere spiegazioni, sia fare ricevimento (anche in gruppo) o organizzare esercitazioni dedicate

Training II

Le domande che seguono possono essere utili per capire se ci sono alcune parti del programma su cui ci sono ancora dei dubbi. Attenzione: le domande non sono certamente esaustive dato che non coprono tutti gli argomenti, ma potete utilizzarle per fare un controllo della vostra preparazione su alcuni argomenti. Se avete difficoltà a rispondere ad alcuni quesiti, è probabilmente il caso di approfondire quegli argomenti. In fondo alla lista, troverete anche un’indicazione del livello di difficoltà delle domande.

  1. Attribuire il nome IUPAC, comprensivo di stereochimica, al seguente composto:

2. Che succede se mettiamo il composto raffigurato in alto in presenza di ione metossido?
3. Nel composto 1 c’è un anello aromatico, in particolare un benzene sostituito. Immaginiamo di avere il nitrobenzene. Il gruppo nitro è un gruppo fortemente disattivante. Dimostare quest’affermazione.
4. In che modo il gruppo nitro orienta eventuali altri sostituenti.
5. Che effetto ha il gruppo nitro sull’acidità del fenolo? Prendere in considerazione il fenolo sostituito col gruppo nitro in diverse posizioni (orto/meta/para).
6. Definire l’ibridazione di tutti gli atomi di ossigeno della molecola in 1.
7. In che modo possiamo predire le proprietà fisiche dei composti organici? Fornire degli esempi pratici.
8. Spiegare in che modo la geometria molecolare influenza il momento dipolare di una molecola.
9. Per una stessa molecola, conformeri diversi possono essere caratterizzati da momenti dipolari diversi. Spiegare questa affermazione e fornire degli esempi concreti.
10. Il composto 1,4-diclorobenzene non ha momento dipolare. Momento dipolare che è invece presente nel cis-1,4-diclorocicloesano. Spiegare perchè.
11. Per l’1,4-diclorocicloesano esistono due isomeri geometrici. Per ciascuno degli isomeri geometrici, disegnare i conformeri a sedia e individuare il conformero più stabile, spiegando il perchè.
12. Confrontando tra loro gli alogeni per quel che concerne l’influenza sulla costante di equilibrio per i cicloesani monosostituiti (Tabella 3.9 del Bruice), si osserva un trend interessante. Quale? Fornire una spiegazione plausibile per i dati sperimentali.
13. Come sintetizzeresti il terz-butossicicloesano mediante sintesi di Williamson? Dopo aver scelto la strategia sintetica migliore, valutare l’effettiva efficacia della sintesi proposta ed eventualmente proporre metodi alternativi.
14. Confronta lo ione terz-butossido e lo ione metossido dal punto di vista della basicità e dal punto di vista della nucleofilicità. Definisci, inoltre, in maniera chiara i due concetti (basicità e nucleofilicità).
15. Fai degli esempi di acidi organici e di basi organiche.
16. Parla degli effetti della struttura sull’acidità.
17. In che modo possiamo utilizzare l’equazione di Henderson-Hasselbalch per capire se un composto ionizzabile si troverà in soluzione nella sua forma acida o nella sua forma basica?
18. Parlare dell’acidità degli idrogeni in alfa ad un gruppo carbonilico. Confrontare tra loro i diversi composti carbonilici definendo anche una scala di acidità per gli idrogeni legati al carbonio alfa.
19. A proposito di composti carbonilici, confronta tra loro i meccanismi di sostituzione nucleofila acilica e quelli di addizione nucleofila.
20. Se alcuni tra i composti carbonilici vanno incontro a reazioni di addizione nucleofila, gli alcheni vanno incontro a reazioni di addizione elettrofila. Fare degli esempi di addizione elettrofila agli alcheni, mostrando i meccanismi.
21. A differenza degli alcheni, il benzene va incontro a reazioni di sostituzione elettrofila. Spiegare perchè.
22. Gli alcheni possono essere sintetizzati a partire dagli alogenuri alchilici. In che modo? Quale sarà l’alchene principale ottenuto a partire da (2S,3R)-2-cloro-3-metilpentano? E a partire da (2S,3R)-2-fluoro-3-metilpentano?
23. La regola di Zeitzev non è sempre utile per identificare il prodotto principale di una reazione di eliminazione. Spiegare il perchè e fare degli esempi concreti.
24. Scrivere un monosaccaride che sia un aldopentoso e che abbia tutti i carboni chirali con configurazione S. Questo zucchero appartiene alla serie D o alla serie L?
25. A partire dallo zucchero in 24 mostrare il meccanismo di epimerizzazione e di riarrangiamento enediolico.
26. Cosa sono due epimeri?
27. Scrivere un legame peptidico.
28. Che tipo di legame è il legame peptidico? Che caratteristiche ha?
29. Immagina di voler sintetizzare un dipeptide, ma la sintesi coinvolge amminoacidi che hanno gruppi reattivi in catena laterale. Cosa faresti per evitare che questi reagiscano? (NB: la domanda è generica, non riguarda un gruppo in particolare)
30. Mostrare una strategia per la sintesi del 2-metil-1-propil-1-cicloesanolo a partire da 1-cloro-2-metilcicloesano (sono necessari più passaggi). Mostrare i meccanismi delle reazioni qualora siano tra quelli oggetto del programma.

Grado di difficoltà delle domande:
Alto (richiedono più passaggi e/o notevole padronanza della disciplina): 2, 5, 12, 13, 23, 29
Medio (domande che vanno al di là della mera esposizione/applicazione di concetti teorici): 30
Basso (domande che riguardano l’esposizione di concetti teorici, la dimostrazione di semplici meccanismi di reazione, l’applicazione diretta di concetti teorici di base): tutte le domande non incluse nelle due liste precedenti.

Esercitiamoci per la prova scritta I

Suggerimento: per poter usare questi set di esercizi come test di autovalutazione, svolgerli senza l’ausilio di libro/appunti ed impiegando un tempo massimo di 2 ore per ciascun set.

PRIMO SET

1. Attribuire il nome IUPAC, comprensivo di stereochimica, ai seguenti composti:

2) Indicare qual è la relazione (isomero strutturale, conformero, enantiomero, diastereoisomero, stesso composto, etc.) delle strutture a, b, c, d con il composto qui mostrato:

3) Per i carboni indicati da freccia (A, B, C) nella figura seguente, indicare: a) ibridazione, b) angolo di legame, c) geometria. Dire inoltre quale dei legami C-H degli idrogeni evidenziati è il più lungo spiegando sinteticamente perchè.

4) Scrivere il conformero più stabile del trans-1-bromo-4-isopropilcicloesano. Spiegare i fattori che lo rendono più stabile rispetto all’altro conformero. Dire, inoltre, quale tra l’isomero cis e l’isomero trans reagisce più velocemente in una reazione E2.

5) Disegnare il diagramma energetico per la reazione di addizione di acido bromidrico al propene.

6) Mostrare le condizioni e il meccanismo per la seguente trasformazione:

7) Completare le seguenti equazioni indicando le condizioni di reazione o i prodotti

8) Scrivere l’L-galattosio in proiezione di Fischer (il galattosio è l’epimero in 4 del glucosio)


SECONDO SET

1. Attribuire il nome IUPAC, comprensivo di stereochimica, ai seguenti composti:

2. Quale delle seguenti strutture è la (2S,3R)-3-bromo-2-butanammina? (NB: è possibile scegliere più di una opzione):

3. Ordina i seguenti composti per acidità crescente e motivare la scelta

4. Quali sono l’ibridazione, la geometria e l’angolo di legame di un carbonio carbocationico?

5) Scrivere tutte le strutture di risonanza dello ione carbossilato che si ottiene quando l’acido propanoico reagisce con una base. Confrontando il doppio legame C=O dell’acido propanoico con quello presente nel propanone, che considerazioni è possibile fare circa la lunghezza e forza dei legami in questione?

6) A partire dall’opportuno alchene, mostrare il meccanismo che porta alla formazione del seguente prodotto mediante una reazione di idroborazione-ossidazione. Indicare altri prodotti che si formano nel corso della reazione.

7) Le seguenti reazioni daranno, come prodotto principale, degli alcheni che non rispondono alla regola di Zeitzev. Disegnare i prodotti principali e argomentare.

8) Completare il seguente schema sintetico. Indicare la stereochimica quando opportuno

9) Quello mostrato di seguito è un disaccaride, il saccarosio. Dire se è o meno uno zucchero riducente spiegando brevemente perchè

Saccarosio - Wikipedia

TERZO SET

1. Scrivere il seguente composto e dire se il nome è corretto. Se non lo è, attribuire il nome IUPAC corretto.
4-(3-idrossipropil)-cicloesene

2. Assegnare il nome IUPAC, comprensivo di stereochimica, al seguente composto:

3. Dire se le seguenti molecole sono chirali


4. Qual è la relazione stereochimica che intercorre tra le seguenti strutture?

5) Giustificare il carattere aromatico, antiaromatico o non aromatico dei seguenti composti e ioni

6) Quale tra i seguenti è il conformero più stabile del 3-metil-1-butanolo?

7) Individuare gli idrogeni più acidi per ognuno dei seguenti composti:

8) A partire da uno dei composti riportati nel riquadro e utilizzando qualsiasi altro reagente necessario, suggerire la sintesi del seguente prodotto, indicando sulle frecce le condizioni di reazione.


9) Mostrare la sintesi del 4-metil-3-penten-2-one a partire dal propanone.

10) Scrivere i prodotti principali delle seguenti reazioni. Indicare la stereochimica dei prodotti quando opportuno

12) Scrivere l’α-D-glucopiranosio in proiezione di Haworth


Cosa fare se si riscontrano difficoltà o se si hanno dubbi:
-rivedere gli argomenti problematici (NB: non si possono risolvere gli esercizi senza aver studiato la teoria, per cui sarà necessario studiare e approfondire l’argomento ed eventualmente-successivamente-esercitarsi ulterioremente utilizzando sia gli esercizi del libro sia quelli presenti su questo blog).
-contattare il docente: è possibile sia chiedere spiegazioni, sia fare ricevimento (anche in gruppo) o organizzare esercitazioni dedicate

Training I

Le domande che seguono possono essere utili per capire se ci sono alcune parti del programma su cui ci sono ancora dei dubbi. Attenzione: le domande non sono certamente esaustive dato che non coprono tutti gli argomenti, ma potete utilizzarle per fare un controllo della vostra preparazione su alcuni argomenti. Se avete difficoltà a rispondere ad alcuni quesiti, è probabilmente il caso di approfondire quegli argomenti. In fondo alla lista, troverete anche un’indicazione del livello di difficoltà delle domande.

  1. Descrivi il concetto di ibridazione sp³ nel carbonio e come influisce sulla geometria molecolare del metano.
  2. Spiega la differenza tra legami σ e π in termini di sovrapposizione degli orbitali.
  3. Spiega la differenza tra un carbocatione e un carbanione in termini di stabilità e struttura.
  4. A quale valore di pH la concentrazione di un composto con pKa= 6.5 sarà 100 volte maggiore in forma acida piuttosto che in forma basica?
  5. Quali sono le interazioni non covalenti che possono instaurarsi tra le molecole? In che modo ne influenzano le proprietà fisiche?
  6. Chi avrà punto di ebollizione maggiore tra il pentano, il 2-metilbutano e il 2,2-dimetilpropano? Spiegare perchè
  7. Perchè gli alcoli con peso molecolare più basso sono più solubili in acqua di quelli con peso molecolare maggiore?
  8. Illustra i diversi tipi di isomeria, fornendo degli esempi.
  9. Prendiamo in considerazione una struttura costituita da due cicloesani condensati (=decalina). Perchè i cicloesani con giunzione trans (=trans-decalina) sono più stabili di quelli con giunzione cis? Utilizzare le proiezioni di Newman per dimostrare quanto affermato. Inoltre, spiegare perchè nel caso della trans-decalina non è possibile l’inversione d’anello.
  10. Disegna il diagramma di energia potenziale relativo alla rotazione di 360° del legame C2-C3 del meso-2,3-diclorobutano (cioè di quello stereoisomero del 2,3-diclorobutano che è un composto meso) iniziando dal conformero meno stabile. Discutere di tutti i fattori che stabilizzano/destabilizzano le varie conformazioni.
    Poi, fare lo stesso con uno dei diastereoisomerei del meso-2,3-diclorobutano.
  11. Definisci un’unità stereogenica.
  12. A partire da un alchene, è possibile sintetizzare un alcol con diversi metodi. Illustra quelli studiati, confrontando tra loro i meccanismi e i prodotti di reazione.
  13. Tra i metodi sopra discussi, quale sceglieresti per sintetizzare il 3,3-dimetil-2-pentanolo a partire dal 3,3-dimetil-1-pentene?
  14. Alcheni e cicloalcani condividono la stessa formula generale. Immaginiamo di avere un composto di formula molecolare C6H12. Pur conoscendo la formula molecolare, non conosciamo la struttura. Potremmo sfruttare la reazione con Br2 in acqua per capire se siamo di fronte ad un alchene o ad un cicloalcano? Come?
  15. Spiega cosa si intende per reazione stereoselettiva e per reazione stereospecifica con esempi.
  16. Spiega la differenza tra una reazione di sostituzione nucleofila bimolecolare e una monomolecolare. Discuti le evidenze sperimentali a favore dell’uno e dell’altro meccanismo.
  17. Parla delle reazioni di sostituzione nucleofila degli eteri.
  18. Perchè il prodotto principale della reazione di disidratazone dell’1-butanolo è il 2-butene?
  19. In che modo è possibile sintetizzare un diolo cis a partire da un alchene? E un diolo trans? E un epossido? Come sintetizzeresti un epossido a partire da un’aloidrina?
  20. Confronta tra loro il meccanismo di apertura di un epossido in ambiente acido e in ambiente basico.
  21. Discuti le proprietà fisiche dei derivati degli acidi carbossilici.
  22. Quando un acido carbossilico viene dissolto in acqua marcata con l’isotopo dell’ossigeno 18O e viene aggiunto un catalizzatore acido, nel prodotto entrambi gli ossigeni risultano marcati (il che significa che entrambi gli 16O sono stati sostituiti da 18O). Proponi un meccanismo per spiegare l’osservazione sperimentale.
  23. Mostra il meccanismo di idrolisi acido-catalizzata del pentanoato di terz-butile.
  24. Il carbonio alfa di aldeidi e chetoni è relativamente acido. Fornire una spiegazione.
  25. Spiega il concetto di aromaticità e applicalo al caso del furano.
  26. Prendiamo in considerazione gli amminoacidi che non hanno gruppi ionizzabili in catena laterale: per questi amminoacidi, pur essendo i valori di pI molto vicini tra loro, come spieghiamo il fatto che il valore non è esattamente lo stesso per tutti?
  27. Se facciamo reagire l’acido 2-[(2S)-ciscloes-2-enil]acetico con bromo in diclorometano, otterremo un unico prodotto di formula molecolare C8H11BrO2 + HBr. Individuare la struttura del prodotto e proporre un meccanismo per la reazione. Infine, definire la stereochimica del prodotto ottenuto e determinare la configurazione dei carboni chirali.
  28. Come sintetizzeresti il 3-metilcicloes-2-en-1-one mediante condensazione aldolica? E il 2-ossocicloesancarbossilato di metile mediante condensazione di Claisen?
  29. Sintetizzare il 4-etil-4-eptanolo, utilizzando propanale come unica fonte di atomi di carbonio. Poi, a partire dal 4-etil-4-eptanolo, proponi una strategia per ottenere il 4-etil-3-eptanone.
  30. Assegnare il nome IUPAC, comprensivo di stereochimica, al seguente composto:

Grado di difficoltà delle domande:
Alto (richiedono più passaggi e/o notevole padronanza della disciplina): 27, 29
Medio (domande che vanno al di là della mera esposizione/applicazione di concetti teorici): 14, 22, 26, 28
Basso (domande che riguardano l’esposizione di concetti teorici, la dimostrazione di semplici meccanismi di reazione, l’applicazione diretta di concetti teorici di base): tutte le domande non incluse nelle due liste precedenti.

Integrazione su alcuni meccanismi di reazione

Nel testo di riferimento (il Bruice) alcuni meccanismi non sono esplicitati (o in alcuni casi non lo sono per esteso), data la somiglianza con altri meccanismi (o per il fatto che si tratta di meccanismi già spiegati altrove).

Qui troverete un elenco di questi meccanismi con indicazioni su dove trovarli o con spiegazioni relative alla loro estrapolazione da meccanismi già presenti sul libro:

Sintesi di Gabriel: Dopo aver sintetizzato l’immide N-sostituita, questa deve essere idrolizzata. Ci sono diversi metodi per ottenere questa idrolisi, quello indicato sul testo è l’idrolisi in ambiente acido. Il meccanismo ricorda quello dell’idrolisi di un’ammide catalizzata da acidi (la cui spiegazione potete utilizzare a supporto della comprensione del meccanismo qui riportato; NB: per visualizzare i commenti ai singoli passaggi, è necessario scaricare il file pdf).

Transesterificazione catalizzata da acidi: meccanismo identico all’idrolisi dell’estere catalizzata da acidi. Il meccanismo per esteso è presente nel file delle correzioni degli esercizi su Reazioni di sostituzione nucleofila acilica (Ex 1a). Per la spiegazione relativa ad ogni passaggio, far riferimento al meccanismo di idrolisi dell’estere catalizzata da acidi.

Transesterificazione favorita da base: meccanismo identico all’idrolisi dell’estere favorita da ione idrossido. Il meccanismo per esteso è presente nel file delle correzioni degli esercizi su Reazioni di sostituzione nucleofila acilica (Ex 1e). Per la spiegazione relativa ad ogni passaggio, far riferimento al meccanismo di idrolisi dell’estere favorita da ioni idrossido.

Esterificazione di Fischer: il meccanismo è l’esatto contrario del meccanismo di idrolisi dell’estere catalizzata da acidi. Esso è presente nel file delle correzioni degli esercizi su Reazioni di sostituzione nucleofila acilica (Ex 4c). Per la spiegazione relativa ad ogni passaggio, far riferimento al meccanismo di idrolisi dell’estere catalizzata da acidi (ovviamente tenendo conto che si tratta del meccanismo inverso).

Idrolisi di un nitrile catalizzata da acidi: il meccanismo è riportato sul libro, ma ad un certo punto, dopo la formazione dell’ammide protonata, si fa riferimento ad “alcuni stadi”. Questi stadi non sono altro che quelli descritti nel meccanismo di idrolisi di un’ammide catalizzata da acidi (pag. 712, a partire dal secondo passaggio).

Reazioni delle anidridi con acqua (idrolisi) e ammine: scaricare il file qui

Idrolisi immina: il meccanismo corrisponde alla reazione inversa rispetto alla sintesi dell’immina (ma fare attenzione alla irreversibilità dell’idrolisi, a causa delle condizioni di reazione–> vedi spiegazione a pag. 762) e sarà esplicitato nel file relativo alle correzioni degli esercizi del post relativo alle Biomolecole (correzioni che non sono state ancora caricate)

Idrolisi emammine: scaricare il file qui. Valgono le stesse considerazioni fatte per l’idrolisi dell’immina.

Idrolisi acetale: il meccanismo corrisponde alla reazione inversa rispetto alla sintesi dell’acetale ed è esplicitato sul libro nella “strategia per la risoluzione dei problemi” a pag. 771.

Meccanismo di ciclizzazione degli zuccheri: sarà riportato nel file relativo alla correzione degli esercizi sulle Biomolecole. NB: le correzioni saranno rese disponibili entro il prossimo fine settimana.

Sintesi di Kiliani-Fischer: Si tratta di reazioni già note, in ogni caso i meccanismi per esteso saranno riportati nel file relativo alla correzione degli esercizi sulle Biomolecole. Per le spiegazioni è possibile far riferimento ai paragrafi del libro in cui sono spiegati i singoli meccanismi.

Sintesi dei peptidi: Pur essendo i meccanismi coinvolti riportati sul libro, alcuni passaggi sono sottintesi. Un meccanismo più dettagliato sarà riportato nel file relativo alla correzione degli esercizi sulle Biomolecole. Da integrare con le spiegazioni presenti sul testo. Per l’ultimo passaggio (idrolisi con acido trifluoroacetico) non è richiesto il meccanismo.

Per finire, qui troverete la slide relativa allo ione tropilio (catione aromatico).


Biomolecole

Nelle tracce di alcuni esercizi sono indicate le pagine del libro dove è possibile trovare supporto. NB: si fa riferimento sempre all’ultima edizione del Bruice. Chi ha altri testi o edizioni vecchie del Bruice può comunque risalire alle pagine utilizzando l’indice analitico.

1) Classifica i seguenti monosaccaridi (vedi esempio a) e dire se appartengono alla serie D o alla serie L. Attribuire la configurazione assoluta a ciascun carbonio chirale .        

  

2) I monosaccaridi a 5 e 6 termini esistono in soluzione acquosa in maniera preponderante nelle loro forme emiacetaliche cicliche. Mostrare il processo di ciclizzazione per tutti gli zuccheri dell’esercizio 1 per cui questo è possibile. Indicare il carbonio anomerico e per ciascuno disegnare sia l’anomero alfa, sia l’anomero beta.

3) Scrivere:
a) D-mannosio (il mannosio è l’epimero in 2 del glucosio)
b) L-galattosio (il galattosio è l’epimero in 4 del glucosio)
c) D-allosio (l’allosio è l’epimero in 3 del glucosio)
d) L-idosio (l’idosio è un diastereoisomero del glucosio, che ne differisce per la configurazione al C-2, C-3 e C-4)
e) il D-fruttosio (il fruttosio è un chetoso che presenta, ai carboni chirali che restano tali, le stesse configurazioni assolute del glucosio)

4) Mostrare cosa accade se mettiamo il D-mannosio (epimero in 2 del glucosio) e il D-fruttosio in ambiente basico

5) Mostrare i prodotti di riduzione con sodio boro idruro e di ossidazione col reattivo di Tollens dei monosaccaridi dell’esercizio 3.

6) Mostrare il meccanismo e i prodotti della sintesi di Kiliani-Fisher effettuata su D-treosio e su D-eritrosio. è possibile sintetizzare il D-glucosio a partire da uno dei due? Come procedereste?

7) Dopo aver solubilizzato in acqua l’alfa e il beta D-galattopiranosio, si osserva per le due soluzioni una rotazione specifica pari a +150,7° e +52,8°, rispettivamente. Quando si effettua di nuovo la misura dopo un certo tempo, si osserva per entrambe le soluzioni una rotazione specifica pari a +80,2°. Come possiamo spiegare questa osservazione?

8) Scrivere i seguenti amminoacidi sia in proiezione di Fischer sia utilizzando le strutture a segmenti:
a) L-alanina (R=-CH3)
b) L-glutammina (R= -CH2CH2C=ONH2)
c) Acido L-aspartico (R=-CH2COOH)
d) L-cisteina (R=-CH2SH)

9) Quella riportata di seguito è la curva di titolazione dell’amminoacido alanina (R=-CH3).

a)  Disegnare una curva di titolazione per l’amminoacido glicina (R=-H).

b) Di seguito è riportata la curva di titolazione per l’acido glutammico (R=-CH2COOH). Scrivere la struttura dell’amminoacido a 1) pH<2, 2) pH=3, 3) pH=7, 4) pH>10. NB: pka3 fa riferimento al pKa del gruppo ionizzabile in catena laterale; prima di affrontare questi esercizi è bene rivedere quanto studiato all’inizio del corso su acidi e basi. Consigliato anche vedere l’esercizio 51 a pagina 1026.


10) Mostrare la sintesi del dipeptide alanilglicina (Ala-Gly; R =-CH3 per alanina, H per glicina).

Pronti per l’esame?

Checklist:

Studio accurato, dettagliato e critico dell’intero programma col supporto di libri e appunti (incluso il materiale didattico condiviso su questo blog)

NB: è possibile consultare il programma dettagliato e aggiornato qui:

Una volta terminato lo studio è possibile utilizzare alcuni degli strumenti presenti su questo blog per valutare la propria preparazione.
Nella sezione “Training pre-esame” saranno resi disponibili set di esercizi e di domande per l’autovalutazione in preparazione sia della prova scritta, sia della prova orale.


Cosa fare se si riscontrano dubbi o problemi nel corso dell’autovalutazione?

NB: è opportuno svolgere anche gli esercizi presenti sul libro.

Per chi volesse spingersi un po’ oltre rispetto alla preparazione di base, può provare a svolgere gli esercizi delle challenge…

Si ricorda che saranno organizzati anche degli incontri pre-esame orale, le cui date sono state pubblicate insieme al calendario degli esami.

Ogni venerdì sarà pubblicato il calendario con gli appuntamenti della settimana successiva, con informazioni aggiornate su orari, aule e quant’altro.


Tutto il materiale qui citato può essere visionato accedendo alla pagina https://chimicaorganicadistabif.com/blog/scienze-biologiche/chimica-organica/

Per conoscenza, di seguito trovate i CRITERI DI ATTRIBUZIONE DEL VOTO D’ESAME estratti dal regolamento didattico (che è possibile consultare, per intero, alla pagina dedicata al Corso di Laurea sul sito del Dipartimento)

CdL Scienze Biologiche-Avvisi Ricevimento del 13/01/26

Si avvisano gli studenti prenotati per il ricevimento in oggetto che non sarà possibile fare ricevimento nell’orario scelto in fase di prenotazione. Tutti gli appuntamenti sono spostati al pomeriggio a partire dalle 15:00 (dovete dunque aggiungere + 4 ore all’orario prefissato).

Nel caso in cui il nuovo orario non dovesse andar bene, sarà necessario prenotare un appuntamento per un giorno diverso usando l’apposito link.

Aromaticità e benzene

1) Un composto è aromatico se:
1) ha una nuvola ininterrotta di elettroni π (per cui il composto deve essere ciclico, planare e ogni atomo dell’anello deve possedere un orbitale p);
2) contiene 4n+2 elettroni π (ovvero un numero dispari di coppie di elettroni π).
Un composto è antiaromatico se soddisfa il primo ma non il secondo criterio per l’aromaticità. I composti antiaromatici sono quindi ciclici, planari, possiedono una nube ininterrotta di elettroni π, ma hanno numero pari di coppie di elettroni π. I composti antiaromatici non possono riempire i loro orbitali molecolari di legame, per cui risultano molto instabili e altamente reattiviti:

configurazione elettronica del benzene (aromatico) e del ciclobutadiene (antiaromatico)

Classifica i seguenti composti o ioni come aromatici, antiaromatici o non aromatici, giustificando la scelta:

2) Assegnare il nome IUPAC ai seguenti composti

3) Mostrare la sintesi delle molecole a-e dell’esercizio 2 a partire dal benzene.

4) In relazione ai composti sintetizzati nell’esercizio 3, che effetto hanno i sostituenti introdotti sulla reattività del benzene? Come orientano eventuali ulteriori sostituenti? Motivare la risposta.

5) Come sintetizzeresti il composto h dell’esercizio 3 a partire dal benzene?

Qui potete trovare alcuni esercizi svolti (si consiglia di prendere visione di questo file solo dopo aver provato a risolvere gli esercizi in maniera autonoma)

« Older Entries Recent Entries »